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CONDITIONS FOR A SUM OF FORMS TO BE OF FIXED SIGN
AND FOR STABILITY OF MOTION ON MANIFOLDS

A.B. AMINOV and T.K. SIRAZETDINOV

Lyapunov's corollary of the Stability Theorem /1/, a special case of
which is Routh's theorem on tuae stability of the steady motion of a
system with cyclic coordinates, provides a point of departure for the
investigation conducted in this paper of the stability of motion on
manifolds, particularly those defined by the integrals of the equations
of the perturbed motion. Sufficient conditions are obtained for a sum
of forms to be positive- or negative-definite and for the motion of
polynomial systems to be stable on these manifolds.

1. Given a sum of forms

2
F(x)= 3 XO(x, Ai,..i ) X=(Zp,.... %) ER" 1.1)
=3

and a manifold ¥ defined by equalities

P

Fox)=2 X (x,8r,.5)=0, r=12,...,mm<np<q (1.2)
1

=

where X®(x, di .i), X® (x, Byi..i) are multilinear forms of degree s, of the form

n n
X (z, A,-‘,,,,-s):_z e 2 Ai i iy« Ty
=1 dg=igy

A*v---'is* B'*x'----is are real numbers, p,q,s m, R are positive integers, and R." is Eucligean
n-space. Like terms in the forms are reduced and the terms are assumed to be lexicographically
ordered.

We shall determine the sufficient conditions for functions (l.l) to be positive- or negative-
definite under constraints (1.2).

Let RN, denote the Euclidean space of vectors Y = (¥, ..., yn) and @: R," - RN the
mapping defined as follows:

—_— — -1 _ -
=29 Vo=, ... Yo =551, {1.3)
9-2 )
Ynax =73 Lg% Ynig =721 LTy .+ » YN-np1 =Ty,
YN-nta =Ty« + YN =Ty
ice, yy=a2, .. .2, and 2 iy, ..l where L {hL < ol iy - =1,2,.. 0=
1,2,..,N.

Lemma 1.1. A sum of forms F(x) (1.1) defined in R,” is mapped by @ (1.3} into a
certain quadratic form (g.f.)
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N

f (y)=5 | Sl Cid= Cig, (1.4)

defined in R,V.

Proof. Let us assume that the forms in the sum F(x) follow each other in decreasing
order of their degrees, beginning with a form of degree 2¢ and ending with a second-degree
form. We shall show that each term in F(x) can be mapped by a mapping @ of type (1.3) into
some monomial of a second-degree ¢g.f. f(y).

We begin with a second-degree term in the function F(x). Using the equalities

21 == YN pays X2 7 YNapagr - 0 S = N
appearing in the mapping (1.3}, we see that a g.f. in the sum of forms F(x) is mapped into
a unigque g.f. in the variables YN-nsts UNomsgs < - IR+

Consider a third-degree form in F (x). Together with the variables

VN-ni1s UN-nage » « 0 YN T
we use the variables

n=aE S h=1,2,...,n)

When this is done each third-order from in F(x) is mapped into a second-degree term in
the g.£f. f(y). For example, the expression z,,z,* is mapped into a product of coordinates
YN-1¥N-n+ But this mapping is not unique, since z,,42,% = z;17,2, also goes into the product
¥N-n-1¥N-

Note that third-order terms in F(x) may also be mapped into first-order terms, if one
uses the compcnents of ® of the form y;= 2 xy (0 < iy g, &y Gy dg = 1, 2,.. ., n). However, only
transformations into a quadratic form interest us here.

Now consider an arbitrary term of order s in  F (x):

Ai,i,...isxi,xi, e Ey (K Ky Gyl L0,
s=22g,2¢g —1,...,2)
We divide the multi~index ijy...i; into two parts:iy,...i and  igygiksg .- IS KL K
<1<y <..- <<, in such a way that @ preserves the one-to-one correspondence
Bfg e oo i D1y dxgtikae . .- B & T2
If one takes ke {l,2,....¢h(s—k={1,2,...,¢q, such a partition is always possible, since
s={2,3,...,2¢}, Then any s-th-order term in F(x) is mapped into a corresponding term 535,

in the g.f. f(y), and hence the sum of forms F(x) is mapped into the q.f. fin.
As a rule, a transformation of the type described is not unique.
In order to determine the dependence between the coefficients ¢;; and the coefficients

Ay ..., of F(x), we equate [(y) and F(x):

N 23

Eci,i,yi.yigzsé X®(x, Ai,...is) (1.5)
and substitute throughout the values of y, ..., yv from (1.3). Equating coefficients of

like terms on the left and right of (1.5), we obtain a system of linear relationships between
€1, and Ay

en=Au 3> Ce=An.a2:-- 2}: EP (2 - 5:‘;1‘,) 05, = (1-6)
2
,Ai,...l‘, cve CNN=Apy

where Zk denotes summation over all partitions of multi-indices i;...17, into subindices

By oo iy and gy . - dg Ep denotes summation over all permutations of i, ..., I that preserve
the conditions i ... il ... <l 8y, 1S the Kronecker delta. System (1.6) may

when ¢;;, are

be used to determine ¢;; given Ail.,.is and conversely, to compute Ail...“,

known.
Lemma 1.2. A function F,(x) (1.2) defined in R;" is mapped by ® (1.3) into a linear
form

N
f"<Y)=,2,b"-’y-” r=1,...m 1.7
defined in the space R,N.

Proof. The highest order of terms in the sums of forms (1.2), which equals the number
p, is not greater than g¢(p<g). Therefore, apart from coefficients, each term in the func-
tions Fr{x) is equal to some unigque coordinate y; in the mapping {1.3). Consequently, the
sums of forms Fr(x) are always mapped by ® into a linear form (1.7).
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Equating the linear form [, {y} (1.7) to the function F,(x),

I 4
2 bl‘iyf: 2’ Xg'a)(x’ Brj,..‘i ), 7‘:1,. v m (18)
J=1 s=1 §
and substituting the values of y;, ..., ynv from (1.3), we obtain
brlerumIl» br2:BT11~--127 ey Brj:Bri,...isq ey brN :Bﬂl (19)

Theorem 1.1. A g.£. f(y} (1.4) is positive- or negative-definite on linear manifolds
M,

N
f,(y):]%b,jyj:wo, r=14,....m; m<n (1.10)

if and only if there exist real numbers a;;, A satisfying the recurrence relation

]

m =21
1
@iy = (Cz;+7vzzbribrj—24kiakj (1.11)
T =1 k=1

i=1,2,,.. . Nyj=4 141, .., Niyizk>l, m<N
and the inequalities
a; 0, Vi=1,2,..., N {1.12)

Proof. Necessity. Assume that [(y) is positive-definite for the values of ¥y, ...,
yn satisfying (1.10). Then, by Finsler's theorem /2/, there exists a number XA such that the
g.f.

P)=1®)+1 3 1) (1.13)

is positive-definite.
In /3/ we establish a test for a g.f. to be of fixed sign, which we now apply to P (y).
Equate P (y) to a positive-definite g.f. with undetermined coefficients

m N N
2
10+2 31 0)= 3 (3 ) (1.14)
B = I
Equating coefficients of like terms on the left and right of (1.14), we find real numbers
@;; satisfying the recurrence relations {(1.14) and inequalities (1.12).

Sufficiency. Suppose there exist real numbers A, g;; satisfying formulae (l.11l) and
(1.12). Then, by the above-mentioned test of /3/, the q.f. P (y) of (1.13) is positive-
definite. Hence it follows that the g.f. f{y) is positive-definite on the linear manifolds
M, {1.10) where P{y)=7F(y).

Theorem 1.2. A sufficient condition for a sum of forms F (x) to be positive-definite
on a variety M (1.2) is that there exist real numbers A, a;; satisfying the recurrence
relations (1.11) and inequalities (1.12) in which the numbers «¢;;, b,; satisfy Egs.{(1.6) and
(1.9), respectively.

Proof. Construct a new function from the functions F({x} (1.1) and F, (x) (1.2), as
follows (A is a real number):
m
QW)=F(x)+ 1 3 F.*(x) {1.15)
P
Apply the mapping @ of (1.3) to @ (x). When this is done, the functions F (x) and
F.(x) are carried into a q.f. [ (y) (1.4) and a linear form f,(y) (1.7), respectively

{see Lemmas 1.1 and 1.2}, so that @ (x) itself is carried intc a q.f. P (y) of type (1.13).

Suppose that the condition of the theorem is satisfied, i.e., the coefficients of the
functions ¥ (x) and F,(x) determine real numbers ¢;, &; such that there exist A, ay;
satisfying formulae (1.11) and (1.12). Then, by Theorem 1.1, the q.f. f(y) of (1.4) is
positive-definite on the linear varieties M, (1.10), and so the g.f. P(y) is also positive-
definite. It was proved in /4/ that under these conditions the function @ (x} of (1.15) is
also positive-definite. Since the identity @ (x)= F(x}) holds on ¥ (1.2), it follows that
the sum of forms F (x) is positive definite on M.

2. The main theorems of the Lyapunov function method, concerning stability of motion,



149

carry over easily to the case of motion on varieties. We will first present the necessary
definitions and then the stability theorems.
Suppose that the equations of perturbed motion are

X' =dx/dt=X{t.x), X({0)=0 @.1)

Here X ={(ry, ... ) =R, X, x) = (X, (¢, x), ..., X, ({, X)) is a vector function defined, con-
tinuous and Lipschitzian with respect to x in a domain

Gt x)={t,x:t E [ty %), nxn=\/2 2* <H>0, H=const) 2.2)
i=1

It is known that the family of integral curves of Egs.(2.1) belongs to the variety M
defined by the equalities

Fo(t,x) =0, r=1,2, ..., m F, (0 =0 ‘ (2.3)

where F,({t,x) are continuous and continuously differentiable with respect to X and t, and their
total derivative with respect to t along trajectories of system (2.1) vanishes.
Let us assume that the solution x =x (f; ¢, z,) of system (2.1) with constraints (2.3}
and intiial conditions X (); ty, Xo) = X¢ is defined for all ¢>0 for which [ x| K H. The
solution x==0 corresponds to unperturbed motion of system (2.1) and is a member of M (2.3).
Consider the real functions V (¢, 2) (V(t, 0) = 0) defined, continuous and having con-
tinuous partial derivatives 9V/at, aV/éx; (i =1,2,...,n) in the domain G (2.2), as well as
their total derivatives V' {f,x) with respect to time along trajectories of system (2.1),

kid
B dv i av {z,
V=g =g+ ) T Xt 24

i=1

Definition 2.1. A function V (4, x) is said to be semidefinite on a manifold M (2.3) if
its non-zero values on M are all of the same sign.

Definition 2.2. A function W (X) not explicitly dependent on t is said to be positive-
definite on a manifold ¥ (2.3) if it is non-negative at every point of M and vanishes if and
only if x == 0.

Definition 2.3, A function V(f,x) is said to be positive-definite on a manifold M
(2.3) if there exists a function W (x), not explicitly dependent on t, which is positive-
definite on M and

Vx> W (2.5)

Definition 2.4. A function V({,x) is said to have an infinitesimal upper limit on a
manifold (2.3) if, for any &> 0, one can find &8 >0 such that the following condition
holds on M:

1Vt x)I<<e, if lIxlI8, t>0

Definition 2.5. A function V(i x) is said to have an infinitely large lower limit on
a manifold ¥ (2.3) if, for any number A >0, there exists a number B >0 such that the
following condition holds on M:

IV x) [ >4, if (lixii> B, t>0

The following proposition, due to Lyapunov, was originally stated as a corollary to his
stability theorem /1/:

Theorem 2.1. If there exists a function V(i x) which is positive-definite on a
manifold M (2.3}, and whose derivative V ({,x) along trajectories of system (2.1) is negative-
semidefinite on ¥ or V' =0 on M, then the unperturbed motion is stable on M.

Theorem 2.2. If there exists a function V(f,X) which is positive-definite and has an
infinitesimal upper limit on M (2.3), and moreover its derivative V' (% X) is negative-definite
on M, then the unperturbed motion is asymptotically stable on M.

Theorem 2.3. 1If the assumptions of Theorem 2.2 hold on the manifold ¥ {(2.3) and the
function V (f,x) also has an infinitely large lower limit on M, then the unperturbed motion
is asymptotically stable in the large on M.

This statement, for a domain G, is due to Krasovskii /5/.

Other stability theorems carry over to the case under consideration. The proofs are
practically the same, expect that one should bear in mind that the motion of the representative
point of the system takes place on a manifold M (2.3).
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3. We will now derive the sufficient conditions for the motion of polynomial systems on
a manifold M (1.2) to be stable. Suppose that the perturbed motions of the system are
described by equations of the form

8 o

J)g 2] X()(X«Cﬂz, z) ﬁ=1,2,---yn ‘(3.1)

$=1

where Cﬁ;l_‘,is are real numbers, h, m integers, the coordinates z,, ..., z, satisfy Egs.(1.2)

and the following conditions hold:

C==0 {3.2)

61
B=1 8

Throughout the sequel these conditions will be: assumed to be valid.
We shall find conditions linking the coefficients ‘le,..is and B"‘r-is (1.2), under

which the unperturbed motion on the manifold M (1.2) is asymptotically stable in the large.
This will be done using Theorem 2.2,
The Lyapunov function will be sought in the set of negative-definite functions

V(x)—~~-—Z(ZX (% dus, 1)) (3.3)

a=1p r=1

where X (x, d, i, -*'r) is a multilinear form of degree r with real constant coefficients
dyiy..q, (@ =1, 2, Ny iy .. i,=1,..., 1), forming a non-singular (N X N) matrix, e.g., an
upper tr:.angular matrlx with non-zero diagonal elements, and Xk is an integer.

The total derivative of the function V(z) (3.3) with respect to t along trajectories of
system (3.1) is a sum of forms of type (1.1):

V(%) —~Z 7 _me (% Ai;) (3.4)

s ]

where ¢ =k +h —1 and the coefficients A4; are determined by reducing like terms after

11...13
scalar multiplication of the vector (9V/dz,, ..., dV/dz,) by the vector (z;’, ..., Z,); they equal
the sums of the appropriate products of the coefficients d“"x--"'r and Cgil,,_is of (3.3) and (3.1),
respectively.

Theorem 1.1 yields conditions for the derivative V' to be positive-definite on the manifold
M (1.2). Hence we arrive at the following assertion.

Theorem 3.1. A sufficient condition for the unperturbed motion of system (3.1) to be
asymptotically stable in the large on the manifold ¥ (l1.2) is that there exist real numbers
A, a;; satisfying the recurrence relations (1.11) and condition (1.12), where the coefficients
Cipr bri are determined from Egs.(1.6) and (1.9), respectively.

we now consider a linear system. System (3.1) with 2 =1 is a system of linear  dif-
ferential equations with constant coefficients:

n
::iéngiZi, p=1,2,....n (3.5)

Egs.(1.2) with p =1 determine linear manifolds M,:

i
N B =0, r=1%12,...,m m<n (3.6
fa=}

The function (3.3) with k=1, N = n, is a negative-definite gq.f.:

V(x)=——o ;V‘_, ( 2 duy, ) G.7)

a=1 =1

Theorem 3.2. The conditions of Theorem 3.1 with N = n are necessary and sufficient
for the linear system (3.5) to be asymptotically stable on linear manifolds {3.6).

Proof. Necessity. Suppose that the linear system (3.5) is asymptotically stable under
conditions (3.6). It follows from Lyapunov's theorem - the existence of a Lyapunov g.f. for
asymptotically stable linear systems - that the total derivative of the function (3.7) along



151

trajectories of system (3.5) is positive~definite. Then the q.f.

m

PR=V +1 3 (3 Bury)’ 3.8)

r=1 i==1

is positive~definite on the linear manifolds (3.6).
A criterion for this g.f. to be positive- or negative-definite is provided by formula
(1.11) and inequalities (1.12).

Sufficiency. Suppose there exist numbers A, a;; is indicated in the theorem, satisfying
(1.11) and (1.12}. Then /4/ the g.f. P {x) is positive-~definite. Hence it follows that
P {x) = V', the total derivative of the q.f. V{x} (3.7) along trajectories of system (3.5)
is positive-definite on the linear manifolds (3.6). By Theorem 2.2, this implies that system
(3.5) is asymptotically stable on the linear manifolds (3.6).

Example. We shall show that the solution x=20 of the system

2y = —2ay7y -+ 223 — 21,8 — 22y2,° 3.9
Ty =3 — ot 5t + nn
is asymptotically stable on the manifold M
Filontg) =2+ 2= 0 (3.10)
Since the total derivative of F,(#,2) with respect to time is zero, the integral curves
of system (3.8) lie on the manifold M.
To solve the problem, we make use of Theorem 3.l1. Consider the Lyapunov function
V= —Y; ldnz; + diszs)® + (deszy)?]
where dy, dy, d,y are arbitrary real numbers,
We evaluate the total derivative V' of this function with respect to t along trajectories
of system (3.8) and construct the function
Q(x) = V' 4 AFy = 2dyy%2 %28 + 2 (dyy? + dygdyy) 212y + (2,2 (3.11)
duydyy) 23%2y + (—2dy® o+ dyydyg — dyg® — dyg?) 23257 + 2dyydye7et —
(2dudyy + d3g® + dag®) y® dydygxs® + (diydyy — dyg® — dop?) 2174 -
(31" -+ ds) 25+ A2 (31 2,0
A mapping taking €(x)} into a g.f. is
NN, B=o4 =, Y=o (3.12)

This mapping takes Q(x) into the q.f.

4
P(y)==f(y) 4+ 2h(y) =;E, o415 V5,+ A (dars + buys)t,  ep =c (3.13)

e I3

Equating the functions € (x) and P (y}), substituting the values of i, ¥ Var ¥, from (3.12)
and comparing coefficients of like terms, we obtain

o = 2dyt, oy = oy = du + dypdy, oy = ey = dy? — YVydydyy
e = ca = Yy (—2d),% + dyydyy — dig® ~ dy?), ¢y = 2dydyy

Ca3 == Cap = 0, cyn= —dpdyy, s = €43 =Yy (dyydsy — dys* — doy?)
=yt dygt, by=1, by=1

Now, using the recurrence relations (1.11}), we compute the numbers a; and check the
validity of inegualities (1.12). The result is

Ay = Gy =1, Oy = 8y = —VYy, 8y = ’{_n Gy = ¥,
Ay = Ggy = 2, Gy = —8, ay= )V39, A="¥,

Thus the conditions of Theorem 3.1 are satisfied. The solution xz=0 is therefore
asymptotically stable in the large on the manifold (3.10).
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